We are on a mission to end HIV.

> 0
people living with HIV in the US
> 0
new HIV infections every year in the US
>$ 0
spent annually on HIV treatment and prevention


Howard Gendelman

Dr. Howard E. Gendelman is the Margaret R. Larson Professor of Internal Medicine and Infectious Diseases, Chairman of the Department of Pharmacology and Experimental Neuroscience, and Director of the Center for Neurodegenerative Disorders at the University of Nebraska Medical Center. Dr. Gendelman is credited in unraveling how functional alterations in brain immunity induce metabolic changes and ultimately lead to neural cell damage for a broad range of infectious, metabolic and neurodegenerative disorders. These discoveries have had broad implications in developmental therapeutics aimed at preventing, slowing or reversing neural maladies. He is also credited for the demonstration that AIDS dementia is a reversible metabolic encephalopathy; a finding realized at the University of Nebraska Medical Center. His work has led to novel immunotherapy and nanomedicine strategies for Parkinson’s and viral diseases being tested in early clinical trials as a result of intense translational investigations.

Benson Edagwa

To ensure efficacy, conventional antiretroviral therapies (ART) require frequent administration to maintain plasma and tissue drug concentrations in the therapeutic range. ART’s failure to eliminate HIV-1 at sites of restricted infection underpins its limitations. ART’s half-life, tissue biodistribution and maintenance of optimal therapeutic drug levels at anatomical sites could be realized through cell and tissue targeted long acting slow effective delivery systems and by optimizing drug metabolism. My research interests are in the areas of design, development and evaluation of antiretroviral prodrugs, development of long acting slow effective release ART (LASER ART) and their application to testing in cell and small animal based assays. In collaboration with Dr. Howard Gendelman and members of the nanomedicine laboratory at UNMC, we have demonstrated that both hydrophilic and hydrophobic therapeutic compounds could be converted into LASER ART. Single administration of LASER ART significantly extends the half-life of therapeutic compounds. The LASER ART are developed through novel chemistry strategies coupled with autophagy stimulation to sustain cell and tissue ART depots.

Alborz Yazdi

Alborz is passionate about making a difference for the millions of patients who are living with HIV / AIDS or are at risk of infection. Alborz’s background in the biopharmaceutical industry covers a variety of experiences including as an institutional investor, industry management consultant, translational researcher and organic chemist. Alborz graduated from Yale with a BS in Molecular Biophysics and Biochemistry.